1943 — У. Маккалок и У. Питтс формализуют понятие нейронной сети в фундаментальной статье о логическом исчислении идей и нервной активности[1]. В начале своего сотрудничества с Питтсом Н. Винер предлагает ему вакуумные лампы в качестве идеального на тот момент средства для реализации эквивалентов нейронных сетей[3]. 1948 — опубликована книга Н. Винера о кибернетике. Основной идеей является представление сложных биологических процессов математическими моделями. 1949 — Д. Хебб предлагает первый алгоритм обучения. В 1958 Ф. Розенблатт изобретает однослойный перцептрон и демонстрирует его способность решать задачи классификации[4]. Перцептрон обрёл популярность — его используют для распознавания образов, прогнозирования погоды и т. д.; в то время казалось, что уже не за горами создание полноценного искусственного интеллекта. К моменту изобретения перцептрона завершилось расхождение теоретических работ Маккалока с т. н. «кибернетикой» Винера; Маккалок и его последователи вышли из состава «Кибернетического клуба». В 1960 году совместно со своим студентом Хоффом на основе дельта-правила (формулы Уидроу) разработали Адалин, который сразу начал использоваться для задач предсказания и адаптивного управления. Адалин был построен на базе созданных ими же (Уидроу — Хоффом) принципиально новых элементах — мемисторах[5]. Сейчас Адалин (адаптивный сумматор) является стандартным элементом многих систем обработки сигналов[6]. В 1963 году в Институте проблем передачи информации АН СССР. А. П. Петровым проводится подробное исследование задач «трудных» для перцептрона[7]. Эта пионерская работа в области моделирования ИНС в СССР послужила отправной точкой для комплекса идей М. М. Бонгарда — как «сравнительно небольшой переделкой алгоритма (перцептрона) исправить его недостатки»[8]. Работы А. П. Петрова и М. М. Бонгарда весьма способствовали тому, что в СССР первая волна эйфории по поводу ИНС была сглажена. В 1969 году М. Минский публикует формальное доказательство ограниченности перцептрона и показывает, что он неспособен решать некоторые задачи (проблема «чётности» и «один в блоке»), связанные с инвариантностью представлений. Интерес к нейронным сетям резко спадает. В 1972 году Т. Кохонен и независимо предлагают новый тип нейронных сетей, способных функционировать в качестве памяти[4]. В 1973 году Б. В. Хакимов предлагает нелинейную модель с синапсами на основе сплайнов и внедряет её для решения задач в медицине, геологии, экологии[9]. 1974 — Пол Дж. Вербос[10] и А. И. Галушкин[11] одновременно изобретают алгоритм обратного распространения ошибки для обучения многослойных перцептронов[12]. Изобретение не привлекло особого внимания. 1975 — Фукусима представляет когнитрон — самоорганизующуюся сеть, предназначенную для инвариантного распознавания образов, но это достигается только при помощи запоминания практически всех состояний образа. 1982 — после периода забвения, интерес к нейросетям вновь возрастает. Дж. Хопфилд показал, что нейронная сеть с обратными связями может представлять собой систему, минимизирующую энергию (так называемая сеть Хопфилда). Кохоненом представлены модели сети, обучающейся без учителя (нейронная сеть Кохонена), решающей задачи кластеризации, визуализации данных (самоорганизующаяся карта Кохонена) и другие задачи предварительного анализа данных. 1986 — Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом[13] и независимо и одновременно С. И. Барцевым и В. А. Охониным (Красноярская группа)[14] переоткрыт и существенно развит метод обратного распространения ошибки. Начался взрыв интереса к обучаемым нейронным сетям. 2007 — Джеффри Хинтоном в университете Торонто созданы алгоритмы глубокого обучения многослойных нейронных сетей. Успех обусловлен тем, что Хинтон при обучении нижних слоев сети использовал ограниченную машину Больцмана (RBM — Restricted Boltzmann Machine). Глубокое обучение по Хинтону — это очень медленный процесс. Необходимо использовать много примеров распознаваемых образов (например, множество лиц людей на разных фонах). После обучения получается готовое быстро работающее приложение, способное решать конкретную задачу (например, осуществлять поиск лиц на изображении). Функция поиска лиц людей на сегодняшний день стала стандартной и встроена во все современные цифровые фотоаппараты. Технология глубокого обучения активно используется интернет-поисковиками при классификации картинок по содержащимся в них образам. Применяемые при распознавании искусственные нейронные сети могут иметь до 9 слоёв нейронов, их обучение ведётся на миллионах изображений с отыскиваемым образом.
Когда возникло понятие иску́сственная нейро́нная се́ть?
Ground Truth Answers: 194319431943
Prediction: